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Axially invariant laminar flow in helical pipes with 
a finite pitch 
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Steady axially invariant (fully developed) incompressible laminar flow of a Newtonian 
fluid in helical pipes of constant circular cross-section with arbitrary pitch and 
arbitrary radius of coil is studied. A loose-coiling analysis leads to two dominant 
parameters, namely Dean number, Dn = Rehi, and Germano number, Gn = Rev ,  
where Re is the Reynolds number, A is the normalized curvature ratio and is the 
normalized torsion. The Germano number is embedded in the body-centred azimuthal 
velocity which appears as a group in the governing equations. When studying Gn 
effects on the helical flow in terms of the secondary flow pattern or the secondary flow 
structure viewed in the generic (non-orthogonal) coordinate system of large Dn, a third 
dimensionless group emerges, y = q/(hDn)i. For Dn < 20, the group y* = Gn Dn-* = 
v / (hRe)  takes the place of y. 

Numerical simulations with the full Navier-Stokes equations confirmed the 
theoretical findings. It is revealed that the effect of torsion on the helical flow can be 
neglected when y < 0.01 for moderate Dn. The critical value for which the secondary 
flow pattern changes from two vortices to one vortex is y* > 0.039 for Dn < 20 and 
y > 0.2 for Dn 2 20. For flows with fixed high Dean number and A ,  increasing the 
torsion has the effect of changing the relative position of the secondary flow vortices 
and the eventual formation of a flow having a Poiseuille-type axial velocity with a 
superimposed swirling flow. In the orthogonal coordinate system, however, the 
secondary flow generally has two vortices with sources and sinks. In the small-y limit 
or when Dn is very small, the secondary flow is of the usual two-vortex type when 
viewed in the orthogonal coordinate system. In the large-y limit, the appearance of the 
secondary flow in the orthogonal coordinate system is also two-vortex like but its 
orientation is inclined towards the upper wall. The flow friction factor is correlated to 
account for Dn, h and y effects for Dn ,< 5000 and y < 0.1. 

1. Introduction 
Laminar flow in helical pipes of constant circular cross-section is of practical 

importance in many branches of engineering in which pipe systems are used for 
transport and treatment of gases and liquids. The problem of the flow in a toroidal 
pipe, i.e. a helical pipe with a zero pitch, was dealt with extensively and drew great 
interest after the initial work by Dean (1927, 1928). Most of the studies dealing with 
laminar flow in a torus concentrated on the limiting case of the loose coiling where 
1/R,  = a /R:  approaches zero. Rh is the radius of the coil and a is the radius of the pipe. 
The mathematical limit of this case is of great interest as the flow is governed by a single 
parameter, namely the Dean number, D = (Gpa3/,uu2)(2/R,)~ with G the axial pressure 
gradient, p fluid density and ,u the dynamic viscosity of the fluid. Several different 
versions of Dean number have been defined. Since D involves the pressure gradient G, 
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it is hardly an appropriate physical controlling parameter to be considered for a flow 
problem. A more common version of the Dean number is defined by Dn = Re/Ri ,  
where Re is the Reynolds number. For details, the reader is referred to the review 
articles dealing with the flow in a torus by Nandakumar & Masliyah (1986) and more 
recently, Berger (199 1). 

One of the interesting features of the flow through a toroidal pipe (torus) has been 
that dual or more solutions appear if Dn exceeds a certain critical value. It has been a 
challenge to compute the secondary solutions. The stationary four-vortex solution with 
the symmetry prescribed was obtained accidentally by Dennis & Ng (1982) and 
Yanase, Goto & Yamamoto (1989); through gradual geometrical change by 
Nandakumar & Masliyah (1982) and Daskopoulos & Lenhoff (1989) and with the 
method of continuation by Yang & Keller (1986). Nandakumar & Masliyah (1982) 
documented the flow properties in terms of Dn and R,. Additional solutions are also 
presented by Yang & Keller (1986) and Daskopoulos & Lenhoff (1989) without 
confirming each other. The characteristics of the developing flow are still unknown. 
The stability of flows in a torus has been studied by Yanase et al. (1989) and 
Daskopoulos & Lenhoff (1989). Yanase el al. (1989) found that both two- and four- 
vortex flows are stable when symmetry is imposed while only the two-vortex flow is 
stable when no symmetry is imposed. Daskopoulos & Lenhoff (1989) found that only 
two- and four-vortex flows are stable when symmetry is imposed. 

Laminar flow in helical pipes of finite pitch has been treated less extensively. Starting 
with Truesdell & Adler (1970), it was suggested that an appropriate approximation 
might be obtained by replacing the curvature for a toroidal pipe by the curvature for 
the helical pipe under consideration, at least for coils of small pitch. This was continued 
by Manlapaz & Churchill (1980), who assumed the effects of non-orthogonality to be 
negligible in the limit of small pitch. Non-orthogonal helical systems were studied by 
Wang (1981) and Murata et al. (1981). Owing to the non-orthogonality of the 
coordinates, problems may arise in the interpretation of their results. To avoid the 
complexity associated with the non-orthogonal helical coordinate system as noted by 
Murata et al. (1981), Germano (1982, 1989) introduced a helical orthogonal coordinate 
system. 

The complexity of the system drew many different explanations of the torsion effect. 
Often apparently opposing results were obtained. Both Tuttle (1990) and Xie (1990) 
attempted to resolve the controversy. Xie (1990) worked on the non-orthogonal 
coordinate system alone. Tuttle (1990) attempted to relate the orthogonal and the non- 
orthogonal coordinates and succeeded in resolving the controversy. Wang (198 1) 
found that for Re = O(1) the torsion effect on the secondary flow is of O(q). However, 
Murata et al. (1981) and Tuttle (1990) found that the torsion effect on the secondary 
flow is of O(A7). Germano (1982) stated that the torsion effect is of second order. In 
a later study, Germano (1989) found that the pipe torsion influences the secondary flow 
through the dimensionless group 7 Re (denoted by T i n  his paper) for a non-circular 
geometry. For a circular geometry, Germano stated that no pure torsion effect at any 
order is to be expected. Kao (1987) found that 7(2h)-i is a controlling parameter 
determining whether the torsion can exert a lsorder effect, and that for h 2 0.4 the 
nonlinear interactions become important. 

Although the order of the torsion effect on the main flow has been resolved by Tuttle 
(1990), the representation of the secondary flow is controversial. Tuttle (1990) stated 
that the (pseudo-) secondary flow stream function is preferable. He argued that the 
non-orthogonal coordinate system is generic to the helical pipe. Earlier, Murata et al. 
(1981) and Kao (1987) had stated that no stream-function-like property exists and the 
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orthogonal secondary flow velocity vector is the only appropriate choice since it is 
normal to the axial flow. However, the orthogonal secondary velocity vector plots are 
not very appropriate in describing the axially invariant (fully developed) secondary 
flows since, as Tuttle (1990) noted, they contain sources and sinks. Wang (1981) was 
able to define a (pseudo-) secondary flow stream function using the physical covariant 
velocity components in the non-orthogonal (generic) coordinate system. This pseudo- 
secondary flow stream function was used by Germano (1982, 1989) and by Tuttle 
(1990). However, Germano (1982, 1989) preferred to present the secondary flow using 
the orthogonal velocity vectors. Wang (1981) and Tuttle (1990) presented the 
secondary flow using the pseudo-secondary flow stream function. Tuttle (1990) further 
stated that the pseudo-secondary flow stream function is indeed a stream function. 

For Re = 0(1), Wang (1981) found that the two recirculating cells become one when 
v / A  Re 2 $. The two recirculating cells (vortices) were in an up-and-down position 
when the helix axis is vertical. Kao’s attempt to compute four-vortex-type solutions 
failed. The state of understanding of laminar flow in helical pipes with finite pitch is 
relatively immature especially for large Reynolds number flows, where investigations 
should be conducted. 

In this study, the separation method (Liu 1992; Liu & Masliyah 1993) is used to 
solve the problem of laminar Newtonian fluid flows in helical pipes having a non-zero 
pitch. The flow simulations are made using the Navier-Stokes equations constructed 
from the orthogonal helical coordinates after Germano (1982). A scale analysis is 
performed for the limiting case of loose coiling and the dominant dimensionless groups 
are identified. The argument over the representation of the secondary flow is also 
addressed. 

2. Mathematical formulation 
Figure 1 shows a sketch of a helical coil and the orientations of the reference systems 

useful in describing the helical pipe. A helical system can be established in reference to 
the master Cartesian coordinate system x(x,, x2, x,) and the local vectors originated on 
the generic curve of the helix as follows: 

(1) 

(2) 

R = (R, cos Q/, R, sin cp, bs), 

T = dR/ds = (-(AR,)~sinp,(AR,)~cosp,b), 

1 d T  
A ds N =  -- = (-COST, -sing?,()), (3) 

B =  T x  N =  (bsinp, -bcosq,(AR,)i), 

p = s / [R:  + ( H / ~ x ) ~ ] ; ,  

(4) 

(5) 
where b = (yH/2n)i; R is the global coordinate vector at the point of consideration 0 
on the generic curve; the generic curve is the track of a particle moving along the 
centre of the helical pipe; T (shown as s in figure l), N and Bare the tangential, normal 
and binormal to the generic curve at the point of consideration on the generic curve, 
respectively; s is the dimensionless curve length parameter along the generic curve, 
s = s’/a; h and 7 are the dimensionless curvature ratio and torsion, respectively; R, and 
H are the dimensionless radius of curvature and the dimensionless pitch for the helix, 
respectively, R, = Ri/a and H = H’/a .  The orthogonality of a helical coordinate 
system can be achieved by simply rotating the basis formed by the Frenet frame B and 
N (the physical plane of B x N will be conserved) around the s-axis. 
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FIGURE 1. Helical coil and its reference systems. 

A given point in the pipe can be mapped to the master Cartesian system through 

x = R+rcosBN+rsinBB. (6) 

The metrics for the transition are given by 

where q1 = s, q, = r, q3 = Bt and Bt = B+As). The basic equations of curve theory 

dN/& = vB-AT, (8) 

dB/ds = - y N ,  (9) 

can be applied to derive the helical coordinate system, where the curvature ratio 

Rc 
RE + ( H / 2 7 ~ ) ,  

A =  

and the torsion is defined by 

By forcing g, = 0, for all mutations of i and j when i + j ,  with a suitable choice for 
the function As), the helical coordinate system (s, r, Bt) is set to be orthogonal. The 
metrics of the coordinate system can then be obtained as 

(12) h, = gtl = 1 +ArsinB, h, = gk, = 1, h, = 4, = r, 
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where Ot = 0 + vs, and (s, r, ot) and its corresponding rectangular coordinates (s, xo, yo) 
are orthogonal. 

The governing equations are first derived in the orthogonal system (s,r,ot) and 
transformed to the non-orthogonal system (s, r, O), leaving the velocity components 
untouched. The transformation is necessary to eliminate the s-dependent coefficients 
and variables (@-‘IS always appears in place of 0). This would allow an axially 
invariant solution to be realizable if exists. It should be noted that the above equations 
used dimensionless quantities. To work with the flow problem, the variables are non- 
dimensionalized in the following manner : 

where a is the radius of the pipe, U is the average axial velocity, t is time, v is the 
kinematic viscosity, u is the axial velocity component (orthogonal s-directional 
component), u is the radial velocity component (r-direction), w is the angular velocity 
component (orthogonal @-directional component), Re is the Reynolds number and p 
is the pressure. The primed variables are the dimensional quantities. For simplicity, we 
will use the non-dimensional variables hereafter. 

The final governing flow equations after all necessary substitution and rearrangement 
are as follows. The continuity equation is 

(13) 
1 a(rh,u) 1 a(h w )  
+-A = 0, 

1 au i;r(s3-’g)+&-$- rh, a6 

where h, is the metric coefficient in the axial direction (s-direction), 

h, = 1 +hrsino. (14) 

The momentum and energy equations are 

(M + dJ $ = s+ 
where the momentum or energy operator M is defined by 

where $ stands for any velocity component or the temperature. The individual 
equations are obtained by specification of the velocity component $, the extra diagonal 
term d, and the source term S,: 

s-momentum: $ = u 

v sin 8+ wcos 8 
hl 

h2 
h Re+- 

hi ’  
db = 

hr ’ 
nw] ; (1 6 b) 
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r-momentum: @ = u 
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1 + 2h, hr sin 0 
r2hf 

d4 = 2 

&momentum: 4 = w 

The boundary is defined by the pipe wall. Although it would be preferable for a 
numerical scheme with a polar coordinate system to have a condition set at the centre 
of the pipe, the centreline of the pipe is simply an interior point in the computational 
domain and need not be treated differently. The boundary and necessary conditions are 

I (19) 
u = u = w = O  at r = l  forall8, 

p = 0 at one reference point of choice, Jr do 1 ru dr 
= t (from the non-dimensionalization). (20) n 

When the flow reaches the fully developed (i.e. axially invariant) stage, the generic 

(21 a) 
(21 6) 

where 6 is the body-centred azimuthal velocity, or the physical covariant velocity in the 
azimuthal direction of the generic (non-orthogonal) helical coordinate system (s, r, 6). 
As for ordinary two-dimensional flows, the field scalar quantity $ can be called the 
pseudo-secondary flow stream function. Confirmation of $ as a stream function is 
given by Tuttle (1990). To compute $, we integrate equation (21 b) after the velocity 
field is obtained. The iso-$ lines show a complete picture of the secondary flow viewed 
in the generic coordinate system (s,r,O). We shall call the ko-$ contour plot the 
secondary flow pattern hereafter. 

The presentations of the numerical simulations are based on the (r, 0)- or (x ,  y)-plane 
with the orientation shown in figure 1 as the cross-section of the pipe. The non- 
orthogonal (r, @-plane is used simply because it is easy to locate along the pipe and the 
flow in the pipe is invariant with axial distance if the pipe is long enough. 

transverse velocity field (u,  5) can be represented by a field potential, $, as follows: 

rh, u = -a$-/ae, 
h, 5 = h, w - yru = a$/ar, 

3. Loose-coiling analysis 
The formulation of the flow in a helical pipe indicates that there are three 

dimensionless parameters involved, namely the curvature ratio A, the torsion 7 and the 
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Reynolds number Re. To identify the dominant parameters, we consider loosely coiled 
pipes and flow at high Reynolds number, i.e. 

h+O and y+O, while R e + + c c ,  h+O. 

The above loose-coiling conditions can be obtained by having either a large radius 
of coil R,  or a large pitch H. Under the above conditions, we can rearrange the 
governing equations to obtain the dominant parameters. Let us introduce the following 
rescaled velocity field : 

u, = u, u2 = Rev,  u3 = Re w, P = Rep.  

The above rescaling is necessary since, for a smaller A ,  the secondary flow field is 
weaker for a given main flow, i.e. Re = fixed. For a fixed secondary flow and h + 0, 
Re+ 00, the above rescaling can make the new secondary flow field variables 
comparable with the main flow field variables. 

In this study, our focus is on axially invariant flows. Hence, we omit the axial 
variation and note that the normalized pressure gradient is directly related to the 
friction factor as follows: 

where f is the Fanning friction factor. 

the metrics of the axial axis 

For A + 0, 7 -+ 0 and Re + + cc, we obtain the following equations : 

h, = 1 +ArsinB+ 1 ; 

continuity 

momentum 

s-momentum 

r-momentum 

4 = up, 

8-momentum 

4 = u3, 

4 = u,, d, = 0, Sd = t f R e ,  

ap U 2  2 au 
S, = - -+Re2As inBu:+”+RehvcosBu, - -~ ,  ar r r2 30 

ap 2 au 
S - - - + Re2 h cos ou: - Re(hr + sin 6)  Ayul + -2 

9 -  ao r2 ae * 
(27) 

From (23)-(27), we can see that four groups emerge; namely Re y, Re2 A, Re yh and 
Re A2v. The latter two groups are of lower magnitude for h + 0, y -+ 0 and Re + + 03, 

while the magnitudes of R e v  and Re2A are higher. The first group can be identified 
as the contribution of the ‘twisting’ forces in a helical pipe and the second group can 
be related to the centrifugal forces. We define the first group as the Germano number, 
Gn. where 

( H / 2 n )  
RE + ( H / 2 7 ~ ) ~ ’  

Gn = R e y  = Re 

Since the twisting forces that make a rotating fluid element twist or swirl are 
proportional to pqU2 and the viscous forces are proportional to ,uU, it follows that the 
Germano number Gn is a direct measure of the ratio of the twisting forces to the 
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viscous forces. In other words, the Germano number is a measure of the torsion effect. 
When Gn is small enough to be negligible, the helical system reduces to the Dean 
problem. 

We define a generalized Dean number as 

t 
Dn = ReAi = Re (Rf + $/27~)~) ' 

The parameter Dn is sometimes referred to as Helical number (He)  or a modified 
Dean number in the literature. For simplicity, we will refer to it as the Dean number. 
In the limiting case of H = 0 (7 = 0), Dn becomes exactly the same as the Dean number 
defined by early investigators. Since the inertia forces are proportional to p U 2 ,  the 
centrifugal forces are proportional to pAU2 and the viscous forces are proportional to 
pU, it follows that the square of the Dean number, as it appears in the equations, is 
a direct measure of the product of the ratio of the centrifugal forces to the viscous 
forces and the ratio of the inertia forces to the viscous forces. The centrifugal forces 
make the fluid element move toward the outer wall. The viscous forces are responsible 
for bringing fluid elements back towards the inner wall. Hence, the Dean number is a 
measure of the secondary flow strength. 

After introducing the Germano number and the generalized Dean number and 
making the loose coiling assumption, the reduced flow equations become : 

continuity 1 a(u, - Gn ru,) 1 a(ru2) - 
- +-- - 0; 
r a0 r ar 

momentum 

(31) 

s-momentum 
r-moment um 

0-momentum 

g5 = ul,  dd = 0, Sd = : fRe ,  

1 ap u2 2au $ = u2, d, = rz ,  Sd = - - - + D n 2 s i n 0 u : + 3 - - ~ ,  
ar r r2 a0 (33) 

Hence, from (30)-(34), we observe that only two newly defined parameters, Gn and 
Dn, are present in the governing flow equations. It is now obvious that, if the Germano 
number is negligible, the loosely coiled helical problem reduces to the original Dean 
problem. 

It is of interest to note that the Germano number always appears in the form 
(u, - Gn rul) as seen from (30)-(34). Since the norms of u3 and u1 are functions of Dn, it 
becomes necessary to relate the Germano number and the Dean number in order to 
find out when the Germano number is important. We note that 

(35) 
where 6 is the body-centred azimuthal velocity component. As also noted by Tuttle 
(1990), 6 is a transverse velocity component defined by pseudo-secondary flow stream 
function $, of (216). Although 6 is not an orthogonal velocity component, it is 
nevertheless the momentum/energy advection velocity in the azimuthal direction. 

Re 5 = ug - Gn rul 
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Hence, the importance of Gn is to be deduced from the momentum equations. 
Applying the M operator as defined by (31) on (35) and making use of (32) and (34), 
leads to 

Re ME = Mu, - Gn M(ru,) cc Dn2 - CGnfRe, 

where C is a constant. 

effect, see Nandakumar & Masliyah (1986), (36) becomes 

(36) 

Since the normalized pressure gradientfRe a Dn; for large Dn and negligible torsion 

Re ME a Dn2( 1 - A,  Gn D n d ) ,  
where A ,  is a constant. (37) 

Hence, the importance of Gn for a given Dn becomes obvious from (37). In order for 
the Germano number to have a noticeable influence on the helical flow field, Gn Dn-i 
must be large, its magnitude determined by the flow field simulations. To account for 
this relative importance, we define a new helical flow group y 

Gn 11 Y=--- Dni - ( A  Dn)f ' 

It is now clear that the Dean problem becomes a special case of the loose coiling 
approximation when y -g 1. Note that the analysis is based on the premise that 
secondary flow is present, i.e. centrifugal forces cannot be neglected. Hence, we would 
hope to qualitatively describe the helical flow field with the Dean flow (toroidal flow) 
field in the limit of 

A+0,  Re > O(A-i) and y +O,  

where Re > O(A-f) means that Re is of order greater than Xi, meaning in turn that the 
Dean number is large. Here y+O means that the Germano number is very small as 
compared with the Dean number. It is understood that the curvature ratio can be small 
but not identically zero, at which the pipe is straight. 

The expression for y at large Dn was derived assuming fRe to be proportional to 
Dni. The uniqueness of y in governing the effect of torsion on the helical flow is 
expected to fail when Dn is small. For very small Dn, the axial pressure gradient is 
relatively invariant with Dn. Hence, (37) must be reconsidered to reflect the variation 
of fRe with Dn for low Dean number flows. 

Using the fact that fRe is relatively constant for small Dn flows, (36) becomes 

Re(MQ* cc on'( 1 -A: Gn Dn-'), (39) 
where the asterisk denotes small Dn.  Hence for very small Dn, the torsion effect is 
governed by 

It is not surprising that for low Dn flows, the parameter y* turned out to be the flow 
transition controlling group as was found by Wang (1 98 1). 

For large Dn flows, it is then expected that y would characterize the transition from 
a torus-like flow to a swirl-like flow: when y is small, the secondary flow pattern is 
torus-like, while for a large y helical flow, the secondary flow pattern is swirl-like. Such 
profiles may be found in Wang (1 98 1) and Tuttle (1 990) for small Dn flows where y* 
is applicable. 

The meaning of y can be deduced from the above derivations. Here, we look at y in 
terms of its original source, body-centred azimuthal velocity (. It can be deduced that 
y is a measure of the ratio of the swirl strength due to the twisting forces (qru,) to the 
swirl strength due to the centrifugal forces (u,). This physical implication of y makes 
it clear that when y is large, the centrifugal force effect becomes less important. Hence, 
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7 1007 f R e  uan u,,*x rm.r ~ m , ,  P",,, 
for A = 0.01, Re = 1000 
0 0 23.90 0.6306 0.8755 0.6110 1.571 5.348 
0.0001 0.01 23.90 0.6305 0.8756 0.6110 1.570 5.348 
0.001 0.1 23.90 0.6305 0.8756 0.6111 1.567 5.344 
0.002 0.2 23.91 0.6305 0.8756 0.6110 1.562 5.349 
0.005 0.5 23.91 0.6304 0.8755 0.61 10 1.549 5.352 
0.01 1 23.92 0.6301 0.8750 0.6111 1.527 5.363 

0 0 23.85 0.6301 0.8783 0.6130 1.571 2.693 
0.00 I 25 0.25 23.85 0.6301 0.8783 0.6130 1.560 2.694 

0 0 23.83 0.6300 0.8790 0.6135 1.571 1.349 
0.0003125 0.125 23.83 0.6300 0.8790 0.6135 1.565 1.349 

for A = 0.0025, Re = 2000 

for A = 0.000625, Re = 4000 

TABLE 1. Helical flow properties for Dn = 100, y < 0.01, and A < 0.01 

-P,"I" 

1.666 
I .666 
I .665 
1.665 
1.664 
1.660 

0.8251 
0.8251 

0.4117 
0.41 17 

the similarity of the helical flow structure is expected to be related to y rather than q 
or Gn when the torsion effect is of concern. 

4. Numerical results and discussion 
The numerical method used here is the separation method (Liu 1992; Liu & 

Masliyah 1993). The advantage of this technique is that an m-dimensional problem is 
divided into m one-dimensional subproblems upon each treatment. The spurious 
pressure modes are eliminated by a careful nodal and interpolate arrangement. For 
details, the reader is to refer to Liu & Masliyah (1993). The mesh size used in the 
computations is n25 x 26fu for Dn < 20 and Dn = 50, n25 x 32fu for 20 < Dn < 1000, 
n60 x 40fu for Dn = 2000 and nlOO x 50fu for Dn = 5000, unless otherwise mentioned 
specifically. Here, n25 x 32fu stands for non-uniform mesh in the radial (r-)  direction 
with 25 mesh points and 32 full domain uniform azimuthal (0-) directional mesh 
points. It should be stressed that all the numerical results are based on the governing 
equations with the full range of A and q,  i.e. no loose coiling is introduced into the 
governing equations in the numerical simulations. 

4.1. Helical j l o ~ l s  with negligible A and y 

It was shown theoretically in the previous section for the loose coiling analysis that 
under the conditions A + 0, y -+ 0 and Re > O(A-i), the Dean number (Dn = Re A-t) 
has the dominant effect on the axially invariant flow behaviour. In this section, selected 
numerical simulations will be made to reveal the significance of Dn. 

The solution characteristics for helical pipes with small torsion and small curvature 
ratio for Dn = 100, A < 0.01 and y < 0.01 are shown in table 1. Where un.o is the axial 
velocity at the centre of the pipe, urnax, rmax and Omax are the maximum axial velocity 
and its location; pmaX and pmin are the maximum and the minimum pressure differences 
from the pipe centre across the pipe. 

It is clear from table 1 that the numerical results show good agreement with the 
theoretical analysis. The axial pressure gradient f R e ,  u , , ~ ,  urnax, rmax and Omax are 
relatively constant at a given Dn value despite the changes in Re, A and 7. Owing to 
scale difference in the pressure and the pseudo-secondary flow stream function, the 
values of pnlax and pmin presented in table 1 are different as A changes. Had we rescaled 
the secondary velocity and pressure fields by multiplying them with A-i or Re as was 
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FIGURE 2. Effect of variations of A and 7 on secondary flow pattern for Dn = 100, y < 0.01 and A < 

y = 7 = 0 ;  (e) A = 0.0025, y = 0.0025, 7 = 0.00125; (f) A = 0.000625, y = 'q = 0. 
0.01. (a) A = 0.01, y = T/ = 0 ;  (b)  A = 0.01, y = 71 = 0.005; (c) A = 0.01, y = 7 = 0.01 ; ( d )  A = 0.0025, 

indicated in the loose coiling analysis section, all the quantities in table 1 would look 
almost identical, irrespective of the individual values of A and q .  This is shown by 
comparing the product of the pressure and Re for different values of Re. 

Under the conditions of loose coiling and small y, figure 2 shows the secondary flow 
patterns of the flow in a helical pipe for Dn = 100. The range of A, q and y is similar 
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Re 

I .003 
2.006 
2.207 
4.013 
8.026 

10.03 
20.06 
50.98 
50.16 

100.3 
200.6 

1003 
1229 
468.9 
468 
543 
501.6 

3714 
3714 
3714 
1295 
1003 
3957 
1648 
2500 
2006 
3034 
4000 

10 000 

A 

0.2484 
0.2484 
0.2484 
0.2484 
0.2484 
0.2484 
0.2484 
0.1951 
0.2484 
0.2484 
0.2484 
0.01 
0.01 
0.0994 
0. I 
0.1987 
0.2484 
0.01 
0.01 
0.0 I 
0.0975 
0.2484 
0.025 
0.195 I 
0.1 I04 
0.2484 
0.1 104 
0.25 
0.25 

7 
0.0 198 
0.0198 
0.0198 
0.0198 
0.0198 
0.0 198 
0.0198 
0.03 1 
0.0198 
0.0 198 
0.0198 
0 
0 
0.0079 
0 
0.01 58 
0.0198 
0 
0.005 
0.01 
0.01 55 
0.0 198 
0 
0.031 
0 
0.0198 
0 
0.02 
0.02 

l0Oy 

7*933 
3*966 
3*606 
1 *983 
0*99 16 
I .774 
1.254 
1.479 
0.793 1 
0.5609 
0.3966 
0 
0 
0.2061 
0 
0.2278 
0.2508 
0 
0.2594 
0.5 I88 
0.2468 
0. I774 
0 
0.2602 
0 
0.1254 
0 
0.0894 
0.0566 

Dn 
0.5 
1 
1.1 
2 
4 
5 

10 
22.52 
25 
50 

I00 
100.3 
122.9 
147.8 
148.0 
242.1 
250 
371.4 
371.4 
37 1.4 
404.4 
500 
625.6 
727.8 
830.6 

1000 
1008 
2000 
5000 

. f R e  u m m  

15.98 1.002 
15.98 1.002 
15.98 1.002 
15.99 1.001 
16.02 0.9992 
16.05 0.9978 
16.40 0.9641 
17.54 0.9475 
18.03 0.9288 
21.27 0.8458 
25.47 0.7995 
23.89 0.8753 
25.47 0.8745 
27.89 0.8422 
27.91 0.8420 
34.59 0.8011 
35.37 0.7874 
38.27 0.8592 
38.28 0.8590 
38.30 0.8586 
40.81 0.8173 
46.53 0.7579 
47.44 0.8379 
53.95 0.7744 
55.14 0.8015 
62.56 0.7519 
59.98 0.8019 
85.85 0.7459 

130.7 0.7377 

b m a x  

0.21 1 1  
0.422 I 
0.4642 
0.8434 
1.683 
2.110 
4.128 
7.883 
9.749 

17.68 
3 1.93 
7.028 
8.482 

30.41 
40.52 
65.5 1 
74.14 
24.03 
24.03 
24.08 
75.87 

61.67 
140.9 

182.8 
162.0 
274.1 
195.3 
536.2 

I260 

fReLlc 

17.54" 

23.92' 
26.00" 
26.9" 
27.0" 
33.0" 

38.03" 
38.1 3d 

39.0" 

48.27' 
51.8" 
56.69" 

62.58' 

TABLE 2. Effect o f  the Dean number under small torsion. The sources o f J R e L l 1  are "Manlapaz & 
Churchill (1980); "ruesdell & Adler (1970); "Dennis & Ng (1982) for h = 0 , ~  = 0; "Yang & Keller 
(1986) for A = 0, 7 = 0; Austin & Seader (1973). The asterisk denotes both the decimal point and 
the number listed being IOOy* 

to that shown in table 1. In all the cases, the flow patterns are very similar indicating 
once again that as long as the loose coiling approximation is met and y Q 0.01, the flow 
corresponds to a torus-like flow. 

4.2. Eject of' the Dean number on helical flows .for a $xed pipe geometry 
To proceed with the examination of the effect of the Dean number on the helical flow, 
the solution properties for selected small-torsion helical pipes with various Dean 
numbers and helical geometries are shown in table 2. Ap,,, = pmax -pFin is the 
maximum pressure difference across the pipe. For comparison, some friction factor 
values from the literature are listed and denoted by .fRe,,,. 

In the limit of zero pitch, q = 0, i.e. for toroidal flow, one calculation was made with 
the same conditions as those of Truesdell & Adler (1970) at Dn = 122.9, A = 0.01, 
7 = 0. The agreement between our result and theirs is relatively good, with a deviation 
of about 2 YO. More comparisons were made with the studies of Austin & Seader (1973) 
and Manlapaz & Churchill (1980). It  is found that at small Dn, the results are in better 
agreement with these investigators' results. However, for large Dn ,the results of Austin 
& Seader are on the higher side and the results of Manlapaz & Churchill are on the 
lower side. To compare with the more acceptedf'Re values, we calculated the case of 
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FIGURE 3. Dean number effect on secondary flow patterns for a fixed helical pipe geometry of R, = 
4, H = 2, Dn < 4. (a) Dn = 0.5, y* = 0.07933; (b) Dn = 1.0, y* = 0.03966; (c) Dn = 1 . 1 ,  y* = 
0.03606; (d) Dn = 1.2, y* = 0.03305; (e) Dn = 2.0, y* = 0.01983; (f) Dn = 4.0, y* = 0.009916. 

Dn = 371.4, h = 0.01, 71 = 0 to simulate the loose coiling solution of Dennis & Ng 
(1982) and Yang & Keller (1986). It is found that the f R e  value is in very good 
agreement with the work of Dennis & Ng (1982), with a deviation less than 0.7% and 
that of Yang & Keller (1986), with a deviation of less than 0.4%. 

Manlapaz & Churchill (1980) also studied steady laminar flow in a helical pipe with 
a small pitch, H < R,, but their solution used a non-orthogonal coordinate system and 



328 S.  Liu and J .  H .  Masliyah 
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1 .o 
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- 1.a 
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1 .o 
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-1.0 
-1.0 -0.5 0 0.5 1.0 -1.0 -0.5 0 0.5 1.0 

(4 (f) 
1 .o 1 .o 

0.5 0.5 

0 0 

-0.5 -0.5 

- 1.0 - 1.0 
-1.0 -0.5 0 0.5 1.0 -1.0 -0.5 0 0.5 1.0 

FIGURE 4. Dean number effect on secondary flow patterns for a fixed helical pipe geometry of R, = 
4 and H = 2. (a) Dn = 5, y = 0.01774; (b) Dn = 10, y = 0.01254; (c) Dn = 50, y = 0.005609; (d) 
Dn = 100, y = 0.003966; (e) Dn = 500, y = 0.001 774; (f) Dn = 1000, y = 0.001 254. 

their helical flow problems have a y of less than 0.015 for Dn > 20. The deviation for 
f Re values is up to 5 Oh. The higher deviation from Manlapaz & Churchill’s results at 
higher Dn could be due to their extrapolation which was based on the solutions for too 
coarse grid sizes. 

For very small Dean number flows, the current calculations in table 2 show the same 
behaviour as that of the toroidal flow findings in the literature (see Manlapaz & 
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-1.0 - 1.0 
-1.0 -0.5 0 0.5 1.0 -1.0 -0.5 ' 0 0.5 1.0 

FIGURE 5. Dean number effect on axial velocity profiles for a fixed helical pipe geometry of 
R,, = 4 and H = 2. (a-f) Dn and y values as for figure 4. 

Churchill 1980). When Dn < 20, the friction factor exhibits a very small dependence on 
Dn. The friction factor can be smaller than its counterpart in straight pipe flow for 
Re < 1 (Chadwick 1985; Van Dyke 1990). 

In 53, the influence of relative torsion or Gn on the helical pipe flow at very small 
Dean numbers was shown to be governed by y*. Figure 3 shows the secondary flow 
patterns for a fixed helical pipe of R, = 4 and H = 2 with Dn < 4. As would be 
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(b) 

I .o I .o 

0.5 0.5 

0 0 
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- 1.0 - 1.0 
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-1.0 -0.5 0 0.5 1.0 -1.0 -0.5 0 0.5 1.0 

FIGURE 6. Dean number effect on pressure contours for a fixed helical pipe geometry of R, = 4 
and H = 2. (a-f) Dn and y values as for figure 4. 

expected, the flow is swirl-like. As Dn increases, an additional vortex appears from the 
bottom of the pipe. The size and the strength of the second vortex increase as Dn 
increases. 

Figures 4-6 show the effect of the Dean number on the helical flow behaviour for the 
same geometry as that of figure 3 for Dn 2 5 .  As an extension of figure 3, figure 4 shows 
that the lower vortex expands until it is equivalent to the upper vortex, at which the 
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(a) (4 
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FIGURE 7. Secondary flow patterns for Dn = 400, H = lo6 and 'I z 6.28 x with varying R,. (a) 
R,. = I ,  y=O.O5;  ( h )  R , . =  2, y=O.O354; (c) R,, = 5, y =0.0224; ( d )  R,  = 10, y=O.O158;  (e )  
R, = 100, y = 0.005; (f) R, = 1000, y = 0.0016. 

flow becomes torus-like with two vortices of equal size and strength but opposite 
direction of rotation. With Dn increasing, the secondary flow streamlines (tubes) 
become denser near the wall and sparser in the centre region. The two vortices always 
appear to be up-and-down. The location of the maximum axial velocity, shown in 
figure 5,  moves away from the centre of the pipe toward the outer wall as the Dean 
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number increases, and the centre region is flat. As Dn increases, the flat area expands 
to form a larger ‘plateau’. The plateau is inclined with the outer region having a higher 
value than the inner region. The value of the pressure away from the centre, which is 
set to zero, increases as the Dean number becomes larger. When Dean number is large, 
as shown in figure 6, the pressure varies sharply in the y-direction and its variation in 
the x-direction is negligible. When Dn is small, the pressure isobar lines are also 
vertically oriented but bent towards either the inner or the outer wall. 

4.3. Effect of pitch on helical$ows.for a fixed Dn and R,  
To investigate the German0 number effect on the flow in a helical pipe, we computed 
the solutions for a family of helical pipes with the same radius of coil, R, = 9. Table 
3 shows the results for Dn = 200 and R, = 9, indicating that as H increases, the values 
off Re and Umax become invariant with H .  Also Re Ap,,, (or A-iAp,,,,,), Re $,,, and 
Re $min (or A+$,,, and h-$bmin) become independent of H .  An explanation for such 
behaviour is given below. 

The limit of large H corresponds to the range where Gn becomes constant. When the 
pitch is large, the torsion and the curvature ratio satisfy the relationship 

h = R,q2. (41) 
Consequently, Gn = Dn/Ri ( H +  00). (42) 
The above relationship indicates that in the limit of large H ,  h + 0 as q +. 0 and Gn 
becomes a constant for given R,  and Dn. For loosely coiled pipes, the flow is dependent 
only on Dn and Gn. Hence, it is expected that the flow behaviour will be invariant as 
H +  co. Indeed, the two bottom rows of table 3 show that f R e  and urnax become 
identical as H is increases. 

4.4. The effect of R,  on helical$ows at aj ixed Dn and large H 
In $4.3, we examined the effect of pitch and the loose coiling limit by varying the pitch. 
Here, we examine the loose-coiling limit by varying the radius of the coil, R,, for large 
H .  As was indicated in the section on the loose-coiling analysis, the flow behaviour 
should become that of a loosely coiled pipe of negligible torsion (y is very small), i.e. 
Dean flow, as the radius of the coil is increased. Table 4 shows the results for this case. 
It can be seen that at small R,, ~~,,,,,~ and I$,J are very different. As R ,  increases, the 
difference between [$,,,ax[ and decreases. All the flow characteristics tend to be 
invariant as R, becomes very large. Once again, the scaling of $ and Ap,,, has been 
taken into account to arrive at the above conclusion. 

Secondary flow patterns are shown in figure 7 for Dn = 400, H = 10’: it can be seen 
that although the pitch of the helical coils is very large, the flow behaviour is close to 
the loosely coiled helical flow of negligible torsion effect for R, > 10. With the help of 
table 4, we may conclude that the torsion effect is negligible when R ,  > 40. Hence, it 
is not necessary to require a coil radius greater than the pitch for the flow in a helical 
pipe to be torus-like. 

4.5. The effect of torsion andflow pattern transition 
From the definition of y as given by (38), if Dn and A are constant, y can only change 
through the variation of the torsion g. Consequently, y and 77 become linearly related 
to each other and hence one can refer to y or g interchangeably. When Dn is fixed, the 
centrifugal forces are kept constant. As the torsion increases, the increase in the 
‘twisting’ forces results in a higher secondary flow strength. Hence, although Dn and 
A are kept constant, the secondary flow strength is still expected to rise as y (or g) 
increases. When g (or y )  is large, the body-centred azimuthal velocity 6 = w-qru/h,  
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t Y f R e  uo.0 

Dn = 20, Re = 80, A = 0.0625 
0 0 16.80 0.9300 
0.1875 0.1677 16.76 0.9382 
0.24206 0.2164 16.72 0.9443 
1 0.8944 16.12 0.9985 

0 0 20.29 0.7324 
0.35355 0.2 19.75 0.7995 
0.44194 0.25 17.96 0.9206 
1.4142 0.8 16.17 0.9986 

0 0 23.80 0.6313 
0.09 0.18 19.73 0.8706 
0.11 0.22 17.89 0.9499 
0.5 1 16.08 0.9944 

0.02 0.02 23.94 0.6288 
0.185 0.185 19.54 0.8929 
0.2 0.2 18.73 0.9290 
1 1 16.07 0.9975 

0 0 24.26 0.6343 
0.45 0.18 20.98 0.8937 
0.625 0.25 18.18 0.9715 
1 0.4 16.86 0.9855 

0 0 24.95 0.6374 
0.8 0.2 21.13 0.9589 
0.9 0.225 19.99 0.9742 
1.2 0.3 18.22 0.9818 

Dn = 50, Re = 200, A = 0.0625 

Dn = 100, Re = 2000, A = 0.0025 

Dn = 100, Re = 1000, A = 0.01 

Dn = 100. Re = 400, A = 0.0625 

Dn = 100, Re = 250, A = 0.16 

%"ax 

0.9835 
0.9879 
0.99 I6 
I .002 

0.9024 
0.960 1 
1 .oo 1 
I .ooo 

0.8779 
0.9747 
0.9802 
0.9946 

0.8733 
0.9796 
0.9812 
0.9977 

0.8571 
0.9968 
0.9920 
0.9903 

0.8260 
1.022 
1.011 
0.9954 

Pmw 

2.565 
2.460 
2.366 
1.1 17 

6.977 
6.266 
4.103 
1.471 

2.697 
1.874 
1.429 
0.7928 

5.406 
3.476 
3.066 
1.127 

12.67 
8.077 
5.238 
3.525 

18.40 
8.441 
7.134 
5.026 

-Pmin 

1 SO6 
1.607 
1.666 
I .248 

2.465 
2.344 
3.283 
I .635 

0.821 
0.759 
1.076 
0.7899 

1.648 
I .653 
1.925 
1.154 

4.40 
3.812 
5.036 
3.845 

7.88 
7.016 
7.110 
5.995 

0.0166 0.0166 
0.04462 0.000315 
0.05488 0 
0.2460 0 

0.023 07 0.023 07 
0.049 78 0.001 93 
0.08332 0 
0.3844 0 

0.004 133 0.004 133 
0.01289 0.000 1 I 
0.021 I8 0 
0.1224 0 

0.008 771 0.007 658 
0.02808 0.0002 
0.03461 0 
0.2463 0 

0.02045 0.02045 
0.061 09 0.000 5 
0.1327 0 
0.2383 0 

0.032 10 0.032 10 
0.1470 0.0001 
0.1826 0 
0.2784 0 

TABLE 5. Effect of torsion on helical flows 

is dominated by the twisting component ~ r u / h , .  Since the axial velocity u is expected 
to be sign-conservative (irrespective to the change of O),  it follows that the secondary 
flow is expected to be uni-directional, i.e. one-vortex or swirl-like at large TI values. 

Table 5 gives a summary of the numerical simulation results for the torsion effect on 
the small to moderate Dn flows for selected cases. In each case, Dn and h are fixed and 
only y, or the torsion 11, varies. From table 5 ,  we observe that the pressure difference 
decreases as y increases. The cross-plane pressure difference decrease suggests that the 
secondary flow strength due to the centrifugal forces decreases. A limit of non-zero 
value is expected for the secondary flow strength due to the fixed centrifugal forces 
from the governing equations (17) and (18). The value of this limit is, however, 
insignificant compared to the secondary flow strength due to the 'twisting' forces. It 
is then expected that the centre and the maximum axial velocities increase and the main 
flow becomes close to a straight-pipe Poiseuille-like flow as the centrifugal force effects 
become insignificant. On the other hand, the secondary flow strength in the non- 
orthogonal coordinate system, - $min, which includes the effect of the rotation of 
the pipe geometry, increases proportionally with y. Hence, the overall non-orthogonal 
secondary flow strength, ~.,,, - due to the twisting forces increases more rapidly 
than its decrease due to the centrifugal forces. 
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FIGURE 8. Secondary flow patterns for Re = 1000, Dn = 100, h = 0.01 and y > 0.01. All the contour 
lines are equally spaced except in (e), where the small vortex on the left is exactly one order of 
magnitude smaller in scaling. (a) y = 7 = 0.02; (b) y = 7 = 0.08; (c) y = 7 = 0.0995; ( d )  y = 71 = 
0.15; (e) y = g = 0.17; cf) y = g = 0.22. 

When y > 0.2, the minimum pseudo-secondary flow stream function value increases 
to zero. This marks the elimination of one vortex which is represented by the negative 
value of the pseudo-secondary flow stream function. Although Dn and h vary over a 
wide range as shown in table 5, the transition point is given by y x 0.2. Hence, the 



336 S. Liu and J. H. Masliyah 
(0)  (6 )  

1 .o I .o 

0.5 0.5 

0 0 

-0.5 - 0.5 

- I .n -1.0 
-1.0 -0.5 0 0.5 1.0 -1.0 -0.5 0 0.5 1.0 

I .o I .o 

0.5 0.5 

0 0 

-0.5 - 0.5 

- 1.0 - 1.0 
- 1.0 -0.5 0 0.5 1.0 -1.0 -0.5 0 0.5 1.0 

(e) (f) 
I .o 1 .o 

0.5 0.5 

0 0 

-0.5 -0.5 

- 1.0 - 1.0 
-1.0 -0.5 0 0.5 1.0 -1.0 -0.5 0 0.5 1.0 

FIGURE 9. Iso-axial velocity contours for Re = 1000, Dn = 100, A = 0.01 and y > 0.01. (a-f)  y 
and values same as figure 8. 

transition from two-vortex to one-vortex flow for large-Dn systems is characterized 

To show the flow transitions and other characteristics, some contour plots and the 
axial wall shear rate (- Gu/& I,.- are shown in figures 8-1 1 for Dn = 100, h = 0.01. 

Figure 8 shows that the secondary flow pattern varies from an almost symmetric 
two-vortex torus-like pattern to a single-vortex swirl-like pattern as y is increased. On 

by Y .  
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FIGURE 10. Pressure profiles for Re = 1000, Dn = 100, h = 0.01 and y > 0.01. (u-f) y and 7 
values same as figure 8. 

increasing y, the upper vortex increases both in strength and in size while the lower 
vortex becomes weaker. The bending of the dividing line between the two vortices can 
be observed as y increases and it is viewed as the distortion generated by the torsion 
of the helical pipe. The distortion is more evident at larger Dn. The pattern becomes 
that of two vortices turning anticlockwise as the lower vortex (negatively $-valued 
vortex) loses both its strength and its size. However, on approaching the disappearance 
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1 -  

0 

-2 t 
FIGURE 1 1 .  Axial wall shear rate distribution across the pipe wall circumference for Dn = 100, h = 
0.01 and various y. The value of the axial wall shear rate is the polar distance from the origin of each 
plot ( 0 , O ) . ( a ) y = 0 . 0 1 , ( b ) y = 0 . 0 8 ,  ( c ) y = 0 . 1 5 , ( d ) y = 0 . 1 7 , ( e ) y = 0 . 2 2 , C f ) y =  1.0. 

of the negatively +-valued vortex, its size reduces rather slowly while its strength 
reduces much faster. For large-Dn flow, as shown in figure 8, two vortices appear to 
be left and right, or inner and outer. The lower or right (outer) vortex eventually 
disappears as y > 0.2. Figure 8 and table 5 indicate that the flow pattern transition 
from a two- to one-vortex pattern occurs at y N 0.2. 

The axial velocity isopleths, shown in figure 9, rotate anticlockwise with the 
maximum axial velocity location moving slowly towards the centre of the pipe as the 
torsion increases. At large y, the axial velocity approaches that of the axisymmetrical 
straight-pipe Poiseuille-like axial velocity. 
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FIGURE 12. Transition from two-vortex to one-vortex flow for Dn < 20. (a) Dn = 10.2, y* = 0.0415, 
y = 0.01299; (b) Dn = 11.74, y* = 0.03606, y = 0.01052; (c) Dn = 5.14, y* = 0.0415, y = 0.0183; 
( d )  Dn = 5.916, y* = 0.03606, y = 0.01482; (e) Dn = 0.2395, y* = 0.0415, y = 0.0848; cf) Dn = 
0.2756, y* = 0.03606, y = 0.06869. 

A surface plot of the pressure is shown in figure 10 for Dn = 100 and h = 0.01. The 
surface of the pressure profile becomes less smooth, even with a locally low-pressure 
zone (cone) forming in helical pipes of large torsion near the lower wall as y increases. 
Figure 10(d) shows clearly a low-pressure cone. Here, y = 0.15 and the hole (minimum 
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A 11 
Dn = 20 

0.0001 0 
0.2 0 
0.5 0 
0.8 0 

0.04 0 
0.2 0 
0.2 0.1 
0.2 0.2 
0.5 0 
0.5 0.25 
0.5 0.5 
1 0 

0.0001 0 
0.2 0 
0.2 0.1 
0.2 0.2 
0.5 0 
0.5 0.25 
0.5 0.5 
1 0 

Dn = 100 

Dn = 500 

Gn 

0 
0 
0 
0 

0 
0 

22.36 
44.72 

35.36 
70.7 1 

0 

0 

0 
11.8 
11.8 

223.6 
0 

176.8 
353.6 

0 

Y 

0 
0 
0 
0 

0 
0 
0.0224 
0.0447 
0 
0.0354 
0.0707 
0 

0 
0 
0.01 
0.02 
0 
0.0 I58 
0.0316 
0 

f R e  

16.6 1 
17.17 
17.86 
18.46 

24.12 
25.21 
25.36 
25.78 
26.89 
27.83 
30.40 
28.26 

42.90 
46.20 
46.60 
47.80 
49.82 
52.07 
58.65 
51.77 

4. n 

0.929 1 
0.9293 
0.9094 
0.8657 

0.6321 
0.6383 
0.6374 
0.6349 
0.6363 
0.6464 
0.6680 
0.6156 

0.5553 
0.5756 
0.5739 
0.5683 
0.5926 
0.5997 
0.6111 
0.5670 

~ m a x  

0.9953 
0.9598 
0.9 I26 
0.8691 

0.8649 
0.8144 
0.8120 
0.8045 
0.7484 
0.761 I 
0.7692 
0.8442 

0.8554 
0.7775 
0.7748 
0.7672 
0.6900 
0.6907 
0.6909 
0.6968 

PIllP., 

0.1091 
4.0 19 
4.802 
4.581 

10.35 
19.81 
20.1 1 
20.94 
23.90 
25.32 
29. I3 
29.13 

2,547 
92.72 
94.39 
99.19 

112.0 
118.8 
138.2 
102.3 

--Pill," 

0.0564 
3.120 
6.885 

13.30 

3.45 
9.22 
9.07 
8.61 

20.84 
19.61 
15.58 
97.96 

0.649 
36.12 
35.54 
33.59 
81.2 
76.2 
59. I 

394. I 

TABLE 6. The effect of the curvature ratio under small torsion 

pressure zone) is located near the lower wall. This pressure cone is again attributed to 
the distortion effect of the torsion. 

The variation of the axial wall shear rate distribution along the pipe wall 
circumference with torsion is shown in figure 11. It can be observed that the axial wall 
shear rate is higher near the outer wall when y is small. As y increases, the location of 
the maximum axial wall shear rate moves towards the inner upper wall. When y is 
large, the axial wall shear rates becomes almost uniformly distributed as shown in 
figure 11(J). 

Figure 12 shows the validity of y* as the flow transition parameter for Dn < 20. It 
can be seen that changes in Dn and y or Re do not reflect the flow pattern transition. 
However, the secondary flow pattern has two vortices at y* = 0.03606 and one vortex 
at y* = 0.0415. The critical value is y* = 0.039. Note that Wang (1981) found the same 
group ( q / h  Re = = 0.0417) from his perturbation series solution. The currently 
determined critical value of y* is slightly smaller than that of Wang by about 7 %. 

4.6. The eject of the curvature ratio 
The effect of the curvature ratio h on the helical flow has not been investigated in great 
detail in the past. Some results are listed in table 6. 

Contours showing the secondary flow patterns with various A for toroidal flows of 
Dn = 500 are presented in figure 13. It can be concluded from figure 13 that the 
secondary flow patterns look remarkably similar, even though A changes from 0.04 to 
an extremely tight torus. For small A, the two vortices are almost equally separated 
near the inner wall and near the outer wall. However, for h approaching unity, the two 
vortices are farther apart near the inner wall, where the secondary flow is weaker than 
that at the outer wall. 
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FIGURE 13. Secondary flow patterns for Dn = 500 and 7 = 0. (a) A = 0.0001, (b)  A = 0.2, 
(c) A = 0.4, ( d )  A = 0.6, (e) h = 0.8, (J) A = 1.0. 
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The axial velocity isolines are shown in figure 14 for a very wide range of curvature 
ratio. For a low value of A, i.e. when the loose-coiling approximation holds, the axial 
velocity is characterized by a single maximum velocity value located along the line of 
symmetry (or more accurately, the vortex dividing line). Its location is close to the 
outer wall. However, as A is increased, a case not as yet reported in the literature, the 
maximum velocity occurs at two locations in the upper and lower section of the torus. 
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FIGURE 14. Iso-axial velocity contours for Dn = 500 and 7 = 0. (a-f) h values same as figure 13. 

A larger plateau forms around the vortex dividing line as h is increased. The locations 
of the maximum axial velocity shift towards the inner wall as h is increased. 

5. Some discussion on the representation of secondary flow 
The secondary flow is an important aspect of helical flow behaviour. It determines 

the fluid movement and the momentum and energy/mass transport in the cross-plane 
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normal to the axial direction. The rotating secondary flow can also stabilize the helical 
flow up to a certain extent. Hence, turbulence in helical flow is delayed compared to 
Poiseuille flow where the secondary flow is absent. Such a stabilizing effect was first 
observed by Taylor (1 929). 

Owing to the non-orthogonality of the generic helical coordinate system, difficulty 
arises in how to view the secondary flow. However, the flow structure is independent 
of reference frame. Using different reference frames, one may observe different 
patterns. Hence, there is no right or wrong in presenting the flow in the different 
reference frames. When viewed from the axial direction parallel to the centreline of the 
pipe and rotating with the pipe, the secondary flow forms streamtubes. When viewed 
from the orthogonal axial direction, the secondary flow cannot be presented by 
streamtubes. 

Tuttle (1990) noted that the streamtube is a correct observation in the rotating 
Frenet frame where the axially invariant (fully developed) flow is extracted. In the limit 
of small y, the strength of the true secondary flow may be deduced from the pseudo- 
secondary flow stream function. Owing to the full circular pipe geometry, no pure 
torsion effect can be observed (Murata et al. 1981; Germano 1989). Hence, the 
secondary flow strength may not be deduced from the pseudo-secondary flow stream 
function when y is large or Gn is dominant. The pure swirling in the cross-section has 
no influence on the main flow and/or heat-mass transfer characteristics. 

On the other hand, the orthogonal secondary velocity is a good indicator of the 
acting secondary flow at least at both limits of small and large y. Figures 15(a) and 
15 (b) present the secondary flow in the same form as Murata et al. (1981), Kao (1987) 
and Germano (1989). The arrow plots are the orthogonal secondary velocity vectors 
on the non-orthogonal (r,  8)-plane. The (r, @-plane is used to avoid the complication 
due to the (orthogonal s-) axially variant nature of the helical flow. When the torsion 
is increased, the secondary flow structure presented in figure 15 is more complicated 
than that presented in figure 8 for the same flow system. 

Figure 15(a) shows that the secondary flow consists of two vortices for small y. 
When y increases, the vortex appearance change in the orthogonal coordinate system 
is the opposite of that in the non-orthogonal coordinate system. An increase in y for 
y < 0.13 results in the lower vortex gaining both in size and in strength, while figure 
8 shows the upper vortex gaining in size and in strength. The change in the vortex 
structure is relatively abrupt when y 2 0.04 as shown in figure I5(a). 

Figure 15 (b) is a continuation of figure 15 (a). The upper vortex becomes very small 
in figure 15 (bi, ii) where y = 0.15 and 0.185, respectively. Hence we may conclude that 
the orthogonal secondary flow consists of a one-vortex structure when y is about 0.16 
and Dean number is high. For further increase in y, the upper vortex starts to gain in 
size and in strength. The vortex dividing line rotates anticlockwise as y is increased. 
When y = 1, as shown in figure 15(bvi), the two vortices become left and right, and are 
of nearly the same size and strength. 

When y is large, as shown in figures 15(biv-vi), the orthogonal secondary flow is 
strong in the centre region and is in the upward direction. In the inner and outer wall 
regions, the secondary flow is very weak and is in the downward direction. Hence, there 
is a strong source (coming from the axial flow) located near the lower wall region. A 
large sink (to the axial flow) appears near the upper wall. This is due to the swirling 
effect of the axial flow when the twisting forces are dominant. Sinks and sources 
obscure the representation of the overall fully developed secondary flow. 

Figures 16 and 17 show the secondary flow pattern and the orthogonal secondary 
flow structure for fixed flow rate and radius of coil while varying the pitch of the pipe. 
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FIGURE 15 (a). For caption see facing page. 

Here, the torsion effect in the small Dean number range can be examined. Figure 16 
shows the secondary flow pattern variation with increasing pitch and transition from 
a two- to a one-vortex pattern. The corresponding orthogonal secondary flow 
structure, as shown in figure 17, does not show any transition to a one-vortex pattern 
on increasing the pitch. When the torsion effect is significant (but not dominant), as 
shown in figure 17(b, c), the orthogonal secondary flow consists of a strong vortex and 
a weak vortex. This is in agreement with the observation by Kao (1987). However, 
when the torsion is dominant, the orthogonal secondary flow structure, figure 17(e,f), 
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FIGURE 15. Orthogonal secondary flow structure variation with y for Dn = 100, h = 0.01, and (a) 
< 0.13; (i) y = 0, (ii) y = 0.01, (iii) y = 0.02, (iv) y = 0.04, (v) y = 0.08, (vi) y = 0.13. (6) y 2 0.15: 

~ ~ ~ = 0 . 1 5 , ( i i ) y = 0 . 1 8 5 , ( i i i ) y = 0 . 2 2 , ( i v ) y = 0 . 3 0 , ( v ) y = 0 . 6 0 , ( v i ) y =  1.0. 

looks very similar to the case of the secondary flow in a torus. Since the flow is very 
weak, the main flow characteristics and transport properties are not influenced by the 
torsion. 

The orthogonal secondary velocity vector plots represent the time-instantaneous 
secondary flow structure on the (r,O)-plane. They indicate the direction of the flow 
normal to the orthogonal axial direction and hence are directly measurable by a 
pointing device, say, a laser Doppler anemometer. The time-instantaneous direction 

I2 FL# 951 
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FIGURE 16. Secondary flow pattern variation with changing pitch for fixed R, = 1.25 and Re = 1OOO. 
(a) H = 5, Dn = 754.5, y = 0.01749; (b) H = 50, Dn = 138.8, y = 0.075; (c )  H = 250, Dn = 28.08, 
y = 0.1687; ( d )  H = 375, Dn = 18.73, y = 0.2066; (e) H = 500, Dn = 14.05, y* = 0.06366; (f) 
H = 5000, Dn = 1.405, y* = 0.6366. 

does not indicate the momentum/energy transport direction on the (r, @-plane owing 
to the geometrical change of the pipe. Hence, the orthogonal secondary flow structure 
cannot be used to interpret the helical flow behaviour such as friction factor variation 
without resorting to the secondary flow pattern. Owing to the sources and sinks present 
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FIGURE 17. Orthogonal secondary flow structure variation with changing pitch for fixed R, = 1.25 
and Re = 1000. (a) H = 100, Dn = 70.03, y = 0.1066; (b) H = 250, Dn = 28.08, y* = 0.031 83; (c) 
H = 375, Dn = 18.73, y* = 0.04775; ( d )  H = 500, Dn = 14.05, y* = 0.06366; (e)  H = 5000, 
Dn = 1.405, y* = 0.6366; v> H = 50000, Dn = 0.1405, y* = 6.366. 

in the orthogonal secondary flow velocity plots for 0 < y < 00, they do not represent 
the overall fluid element movement across the pipe either. However, at the two 
extremes, y = 0 and y+ 00, the arrow plots do represent the true secondary flow. 
Hence, we may conclude that the orthogonal secondary velocity vector plots should be 
used with care. They show only part of the secondary flow, mainly the centrifugal force 
effect. 

I" n 
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The secondary flow patterns (pseudo-secondary flow stream function contour plots) 
represent the s-axis-instantaneous secondary flow structure on the (r, @-plane. They 
are overlapped exposures of secondary flow at various s-distances with the outer wall 
fixed on the right. The true secondary flow may be diminished by the overwhelmingly 
large rotation of the axis. Nevertheless, the secondary flow pattern indicates the 
momentum/energy transport direction on the (r, @-plane since the transverse velocity 
components appear generically in the conservative form of the momentum equations. 
The transverse velocities (u,  6)  are also directly measurable by, say, measuring the 
displacement of a marked particle in the generic coordinate system that is easy to 
locate. Hence, the secondary flow pattern is a property useful in characterizing the 
helical flow. The secondary flow pattern becomes a valid and accurate representation 
of the secondary flow if one observes the flow under the rotating non-orthogonal 
frame. The pseudo-secondary flow stream function isolines can be viewed as a ‘tube’ 
such that a fluid particle trapped in the ‘tube’ will not escape as it moves along the 
helical pipe (Tuttle 1990). Hence, the secondary flow pattern shows the overall 
secondary flow appearance, but not the direction of the secondary flow at a given 
instance. This interpretation of the secondary flow pattern applies equally well to the 
extreme case of a twisted straight pipe. It can be concluded that the secondary flow 
pattern is a preferred representation. However, care must also be taken when using the 
secondary flow pattern (pseudo-secondary flow stream function), that is, one must note 
that the observation is under the non-orthogonal generic reference frame. 

6. Correlation off Re with Dn, h and 7 
Numerous correlations of the friction factor for toroidal flow and/or helical flow 

under the small pitch limit can be found in the literature (see Nandakumar & Masliyah 
1986). However, none of them dealt with helical flow in a pipe of reasonably large 
pitch. Even the effect of curvature ratio for the case of a torus has not been examined 
in a wide enough range. To establish formally a suitable correlation, we need to 
consider the effects of h and y separately to obtain a correlation equation for the 
combined effect. 

The curvature ratio effect on the friction factor is shown in figures 18(a) and 18(b). 
In general, it can be observed that the friction factor increases with curvature ratio. For 
both Dn = 100 and 500, the dependence of f R e  on A decreases with increasing A.  
However, when A = 7, there is a strong dependence off Re on A. Later, it will be shown 
that f Re is proportional to the square root of h when Dn is large. 

The torsion effect on the friction factor is negligible for commonly used helical coils, 
where the pitch is usually small compared with the radius of the coil. Some results for 
the dependence off Re on y are shown in figures 19 (a) and 19 (b). For Dn = 100, it can 
be observed that f Re increases with y for y < 0.1 but otherwise decreases with y. The 
increase of f R e  with y can be attributed to the distortion effect of the torsion on the 
helical flow. As we pointed out, the German0 number causes the secondary flow to be 
unidirectional through the body-centred azimuthal velocity 6 = w - yru/h,. When A 
and Dn are large, Gn A and Gn h2(Ay Re and A2r Re) become significant. Since these two 
terms affect the source terms of the secondary flow momentum equations, the flow 
becomes more complicated as h and Dn are increased. The complication of the flow 
causes f Re to rise. As y is further increased, the twisting forces become dominant and 
f Re decreases monotonically with further increase in y. 

Since the commonly used helical systems are in the range of y < 0.1, we correlate 
only the first part of the monotonic regions of the friction factor variation with y .  We 
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FIGURE 18. Friction factor variation with h for (a) Dn = 100, (b) Dn = 500. 

arrive at the following correlation equation which describes the results of over 250 
cases for Dn < 5000 and y < 0.1 : 

f Re = [ 16 + (0.378 DnAf + 12.1) DnfA;y2] 

3 (43) 
(0.0908 +O.O233Ai) Dni-0.132Af+0.37A-0.2 

X[l+ 1 + 49/Dn 

with a maximum deviation of less than 2 O h .  

When A + 0 ,  y+O and very large Dn(Dn > lOOO), the above equation reduces to 

f R e  = 16(0.8+0.908Dni) (44 a)  

or f /L = 0.8 + 0.908Dni, (44 b) 
where f, is the friction factor for a straight pipe, i.e. f, Re = 16. Equation (44) is in 
agreement with the literature values as shown in table 7, where a Dni dependence is 
predicted. 
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FIGURE 19. Friction factor dependence on the torsion for (a) Dn = 100 and various A ;  

(b) Dn = 20 and A = 0.0625. 

Equation Source 
f/& = 0.1064Dni Adler (1934) 
f/& = 0.509+0.0918Dnf Barua (1 963) 
f/h = 0.388+0.!015Dnt Dennis (1980) 
f/& = 0.1033Dn*[( 1 + 1.129/Dn)i - (1.729/Dn)i]-S Ito (1969) 
f/& = 0.556 +O.P969DnZ Hasson (1955) 
f/& = 0.1033Dni/[l-3.253Dn-f] Mori & Nakayama (1965) 

TABLE 7 .  Friction factor correlations in the literature in terms of Dni 
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Figure 20 shows the predictedfRe values using equation (43). As a comparison, the 
correlation equation by Hasson (1955) for A -+ 0 and q + 0 is also shown. We observe 
that the friction factor in a helical pipe can be significantly different from that in a torus 
when torsion and/or curvature ratio is high. The current correlation equation (43) 
agrees very well with Hasson (1955) in the limiting case of small curvature and 
negligible torsion for Dn > 20. 

Equation (43) also shows that there is no pure torsion effect on the friction factor. 
When zero curvature is imposed, the friction factor in a helical pipe becomes the same 
as that for a torus. This is in agreement with Murata et al. (1981), who specified a zero 
curvature in the governing equations (except the governing centrifugal force term) and 
found no torsion effect on the axial pressure drop. 

7. Conclusions 
Steady fully developed laminar Newtonian flows in helical pipes of a constant 

circular cross-section with a finite pitch are formulated and numerically studied. The 
governing flow equations are constructed from orthogonal helical coordinates. They 
are used to obtain a loose-coiling approximation with two dominant parameters, Dean 
number, Dn = Re,$, with Reynolds number Re and curvature ratio A, and German0 
number, Gn = Req, with q being the torsion. The importance of Gn is investigated. 
For high Dean number flows, a new helical flow group evolves, namely y = Gn Dn-i = 
q(A Dn)-? For very small-Dn flows, the counterpart of y is defined by y* = Gn Dn-2 = 
q / ( A  Re). It is further shown that under the loose-coiling conditions and negligible 
Gn ( A  + 0, y -+ 0, and Re > O(A-i)), the helical flow problem reduces to the Dean 
problem. These qualitative theoretical results are further supported by numerical 
simulations. 

It is found thatfRe and the flow field profiles are almost invariant with A and q when 
Dn is held constant, for y < 0.01 and A +O. A helical flow may be simplified by a 
toroidal flow if y < 0.01. With different A, the cross-plane pressure and the pseudo- 
secondary flow stream function are proportional to AT or Re-' (as are the secondary 
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velocities) with the contour shapes holding remarkably unchanged. When y > 0.01, the 
flow becomes asymmetric and dependent on Dn and y only when A --f 0 and ?,I --f 0. 

The friction factor increases with increasing torsion when y is small, especially for 
large Dean number and large A. When y is large, the friction factor decreases sharply 
towards the value of a straight-pipe Poiseuille flow as y increases. The friction factor 
reaches a maximum value at y z 0.1 for moderate4 and moderate-Dn flows. But for 
small Dn and/or small A, the increase of the friction factor with y is not apparent. Here, 
the distortion effect of the torsion on the flow field is minimal. In other words, there 
is no pure torsion effect on the helical flow. 

For large4 and large-Dn flows, the flow field rotates and distorts as y increases. The 
maximum axial velocity increases as the torsion increases, with its location moving 
spirally from the outer-half of the y-axis towards the centre of the pipe. 

The secondary flow pattern or iso+ contour plot is the secondary flow structure 
viewed in the generic (non-orthogonal) coordinate system. When y > 0.2 for Dn 2 20 
or y* > 0.039 for Dn < 20, the secondary flow pattern consists of one recirculating 
vortex, i.e. the helical flow is a swirling flow when viewed in the non-orthogonal 
coordinate system. When y < 0.2 for Dn 2 20 or y* < 0.039 for Dn < 20, the 
secondary flow pattern consists of two vortices, that is, the flow is torus-like. 

When viewed in the orthogonal coordinate system, the secondary flow is generally 
of a two-vortex pattern with sources and sinks, except at y z 0.16 when it is of nearly 
a one-vortex pattern with a very small vortex at the inner upper wall region. When y 
or Dn is small, the two vortices are in an up-and-down position. When y and Dn are 
large, the two vortices are left and right. Strong sources and sinks exist in the secondary 
flow. The existence of sources and sinks indicates that the orthogonal secondary 
velocity vector plots show only part of the true secondary flow. 

A correlation for the friction factor is developed based on the numerical solutions 
of more than 250 cases. All the controlling parameters Dn, A and y are accounted for. 
For large-Dn flows, the friction factors in the limit of A + O  and q+O are in Food 
agreement with previous experimental and numerical observations off Re - Dns. 

The authors wish to thank the Natural Science and Engineering Research Council 
of Canada for financial support. 
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